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Abstract. In this paper, we are concerned with the multiobjective programming problem with
inequality constraints. We introduce new classes of generalized type I vector-valued functions. Du-
ality theorems are proved for Mond–Weir and general Mond–Weir type duality under the above
generalized type I assumptions.
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1. Introduction

In optimization theory, convexity plays an important role in deriving sufficient
conditions and duality for the nonlinear programming problem. Various general-
izations of convexity have been made in the literature. Hanson (1981) introduced
the class of invex functions. Later Hanson and Mond (1987) defined two new
classes of functions called type I and type II functions, and sufficient optimal-
ity conditions were established involving these generalized functions. In Kaul,
Suneja and Srivastava (1994) consider a multiobjective nonlinear programming
problem involving type I functions to obtain some duality results, where Wolfe and
Mond–Weir duals are considered. Recently, Giorgi and Guerraggio (1998) have
generalized the notion of invexity to vector-valued functions and they provided
some duality results. In this paper, we introduce new classes of vector-valued
functions and derive various duality results for the nonlinear multiobjective pro-
gramming problem. To establish our results with our classes of functions we do
not require the assumption of the scalarization of the objective functions as is
done in (Giorgi and Guerraggio (1998), Kaul et al. (1994)). Consider the following
multiobjective optimization problem:

(MOP) minimize f (x) = (f1(x), ..., fp(x))

subject to g(x)<= 0,

x ∈ X(⊆ Rn), X open,
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wheref : X −→ Rp andg : X −→ Rm are differentiable functions on a set
X ⊆ Rn and minimization means obtaining efficient solutions for the problem
(MOP).

For anyx = (x1, x2, ..., xn)
t , y = (y1, y2, ..., yn)

t ∈ Rn, We denote:

x = y implying xi = yi, i = 1, ..., n;
x <= y implying xi ≤ yi, i = 1, ..., n;
x ≤ y implying x <= y, and x 6= y;
x < y implying xi < yi, i = 1, ..., n.

Let

A = {x ∈ X, g(x)<= 0}, I = {j : gj ( ◦x) = 0}
M = { 1,2, . . . , m }, P = { 1,2, . . . , p }.

For such multicriterion optimization problems, the solution is defined in terms of a
(weak) efficient (Pareto minimal) solution in the following sense

DEFINITION 1.1. We say that
◦
x ∈ A is an efficient solution for (MOP) if and only

if there exists nox ∈ A such thatf (x) ≤ f ( ◦x).
DEFINITION 1.2. We say that

◦
x ∈ A is a weak efficient solution for (MOP) if and

only if there exists nox ∈ A such thatf (x) < f (
◦
x).

In the first half of this paper, we consider a nonlinear multiobjective program-
ming problem with inequality constraints and we introduce new classes of general-
ized type I vector-valued functions. In the second half, Mond–Weir and generalized
Mond–Weir type duals are formulated and the concept of efficiency is used to state
some duality results under generalized type I assumptions.

2. Preliminaries

It will be assumed throughout thatf is the vector objective function andg is the
constraint vector function in problem (MOP). The definition of type I for single
objective and constraint vector (Hanson and Mond (1987)) can be generalized
easily to a multiple objective and constraint vector.

DEFINITION 2.1. (f, g) is said to be type I with respect toη at
◦
x ∈ X if there

exists a vector functionη(x,
◦
x) defined onA×X such that, for allx ∈ A,

f (x)− f ( ◦x) >= (∇f ( ◦x))η(x, ◦x), (2.1)

−g( ◦x) >= (∇g( ◦x))η(x, ◦x). (2.2)

If in the above definition, (2.1) is a strict inequality, then we say that(f, g) is

semistrictly-type I at
◦
x.
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We now define and introduce the notions of weak strictly-pseudoquasi-type I,
strong pseudoquasi-type I, weak quasistrictly-pseudo-type I and weak strictly
pseudo-type I functions for (MOP).

DEFINITION 2.2. (f, g) is said to be weak strictly-pseudoquasi-type I with re-

spect toη at
◦
x ∈ X if there exists a vector functionη(x,

◦
x) defined onA× X such

that, for all x ∈ A,

f (x) ≤ f ( ◦x) ⇒ (∇f ( ◦x))η(x, ◦x) < 0, (2.3)

−g( ◦x)<=0 ⇒ (∇g( ◦x))η(x, ◦x)<=0. (2.4)

This definition is a slight extension of that of the strictly pseudoquasi-type I
functions (Kaul et al. (1994)). This class of functions does not contain the class of
type I functions, but does contain the class of semistrictly-type I functions.

DEFINITION 2.3. (f, g) is said to be strong pseudoquasi-type I with respect toη

at
◦
x ∈ X if there exists a vector functionη(x,

◦
x) defined onA × X such that, for

all x ∈ A,

f (x) ≤ f ( ◦x) ⇒ (∇f ( ◦x))η(x, ◦x) ≤ 0, (2.5)

−g( ◦x)<=0 ⇒ (∇g( ◦x))η(x, ◦x)<=0. (2.6)

Instead of the class of weak strictly-pseudoquasi-type I, the class of strong
pseudoquasi-type I functions does contain the class of type I.

We give examples to show that weak strictly-pseudoquasi-type I and strong
pseudoquasi-type I functions exist. Weak strictly-pseudoquasi-type I functions need

not be strictly-pseudoquasi-type I for the sameη(x,
◦
x) as can be seen from the

following example.

EXAMPLE 2.1. The functionsf :R2 −→ R2 defined byf (x) = (x1 exp(sinx2),
x2(x2 − 1)exp(cosx1)) and g : R2 −→ R defined byg(x) = 2x1 + x2 − 2 are

weak strictly pseudoquasi-type I with respect toη(x,
◦
x) = (x1 + x2 − 1, x2 − x1)

at
◦
x = (0,0) butf (x) andg(x) are not strictly-pseudoquasi-type I with respect to

the sameη(x,
◦
x) at

◦
x because forx = (0,1) and

◦
x = (0,0)

f (x)<= f (
◦
x) but ∇f ( ◦x)η(x, ◦x) 6< (0,0),

alsof andg are not type I with respect to the sameη(x,
◦
x) at

◦
x as can be seen by

takingx = (−π/2,1/2).
Strong pseudoquasi-type I functions need not be Type I with respect to the same

η(x,
◦
x).
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EXAMPLE 2.2. The functionsf : R2 −→ R2 defined byf (x) = (x1(x1 −
1)2, x2(x2 − 1)2(x2

2 + 2)) andg : R2 −→ R defined byg(x) = x2
1 + x2

2 − 9 are

strong pseudoquasi-type I with respect toη(x,
◦
x) = (x1− 1, x2 − 1) at

◦
x = (0,0)

but f (x) andg(x) are not type I with respect to the sameη(x,
◦
x) as can be seen

by takingx = (0,−2) nor they are weak strictly-pseudoquasi-type I with respect

to the sameη(x,
◦
x) as can be seen by takingx = (1,−1).

DEFINITION 2.4. (f, g) is said to be weak quasistrictly-pseudo-type I with re-

spect toη at
◦
x ∈ X if there exists a vector functionη(x,

◦
x) defined onA× X such

that, for all x ∈ A,

f (x) ≤ f ( ◦x) ⇒ (∇f ( ◦x))η(x, ◦x)<= 0, (2.7)

−g( ◦x)<=0 ⇒ (∇g( ◦x))η(x, ◦x) ≤ 0. (2.8)

EXAMPLE 2.3. The functionsf : R2 −→ R2 defined byf (x) = (x3
1(x

2
1 +

1), x2(x2−1)3) andg : R2 −→ R2 defined byg(x) = ((2x1− 4)exp(−x2
2), (x1+

x2−2)(x2
1+2x1+4)) are weak quasistrictly-pseudo-type I with respect toη(x,

◦
x) =

(x1, x2(1− x2)) at
◦
x = (0,0) butf (x) andg(x) are not type I with respect to the

sameη(x,
◦
x) as can be seen by takingx = (−1,0).

DEFINITION 2.5. (f, g) is said to be weak strictly pseudo-type I with respect to

η at
◦
x ∈ X if there exists a vector functionη(x,

◦
x) defined onA×X such that, for

all x ∈ A,

f (x) ≤ f ( ◦x) ⇒ (∇f ( ◦x))η(x, ◦x) < 0, (2.9)

−g( ◦x)<=0 ⇒ (∇g( ◦x))η(x, ◦x) < 0. (2.10)

EXAMPLE 2.4. The functionsf : R2 −→ R2 defined byf (x) = (x1(x
2
1 +

1), x2(x2−1)(x2
2+2)) andg : R2 −→ R defined byg(x) = x1(x

2
2+1) are strong

pseudoquasi-type I with respect toη(x,
◦
x) = (x1 + x2 − 1, x2 − 1) at

◦
x = (0,0)

but f (x) andg(x) are not type I with respect to the sameη(x,
◦
x) as can be seen

by takingx = (−2,0).

3. Mond–Weir Vector Duality

In this section we give some weak, strong, and converse duality relations between
problems (MOP) and (DMOP). We consider the following Mond-Weir dual
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(DMOP) suggested by Egudo (1989) for problem (MOP).

(DMOP) maximize f (y),

subject to u∇f (y)+ v∇g(y) = 0, (3.11)

vg(y)>= 0, (3.12)

v >=0, (3.13)

u>=0, (3.14)

ue = 1; (3.15)

wheree = (1,1, ...,1)t ∈ Rp.

THEOREM 3.1. (Weak Duality.) Assume that for all feasiblex for (MOP) and all
feasible(y, u, v) for (DMOP), any of the following holds:

(a) (f, vg) is strong pseudoquasi-type I aty with respect toη andu > 0;
(b) (f, vg) is weak strictly pseudoquasi-type I aty with respect toη;
(c) (f, vg) is weak strictly pseudo-type I aty with respect toη.

Then the following cannot hold:

f (x) ≤ f (y). (3.16)

Proof. Suppose contrary to the result of the theorem that

f (x) ≤ f (y). (3.17)

hold. Since(y, u, v) is feasible for (DMOP), it follows that

−vg(y)<= 0. (3.18)

By hypothesis (a) i.e(f, vg) is strong pseudoquasi-type I, (3.17) and (3.18) imply

(∇f (y))η(x, y) ≤ 0, (3.19)

v∇g(y)η(x, y)<= 0. (3.20)

Sinceu > 0, the above inequalities give

[u∇f (y)+ v∇g(y)]η(x, y) < 0, (3.21)

which contradicts (3.11).
By hypothesis (b) i.e(f, vg) is weak strictly pseudoquasi-type I, (3.17) and

(3.18) imply

(∇f (y))η(x, y) < 0, (3.22)

v∇g(y)η(x, y)<= 0. (3.23)

Sinceu ≥ 0, (3.22) and (3.23) imply (3.21), again contradicting (3.11).
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By hypothesis (c) i.e(f, vg) is weak strictly pseudo-type I, (3.17) and (3.18)
imply

(∇f (y))η(x, y) < 0, (3.24)

v∇g(y)η(x, y) < 0. (3.25)

Sinceu>= 0, (3.24) and (3.25) imply (3.21), again contradicting (3.11). 2
COROLLARY 3.1. Assume weak duality (Theorem 3.1) holds between (MOP) and

(DMOP). If (
◦
y,
◦
u,
◦
v) is feasible for (DMOP) such that

◦
y is feasible for (MOP), then

◦
y is efficient solution for (MOP) and(

◦
y,
◦
u,
◦
v) is efficient solution for (DMOP).

Proof. The proof of this corollary is the same as that of Corollary 2 of Egudo
(1989). 2
THEOREM 3.2. (Strong Duality) Let

◦
x be efficient solution for (MOP) and as-

sume that
◦
x satisfies a constraint qualification (Marusciac (1982)) for (MOP).

Then there exist
◦
u ∈ Rp and

◦
v ∈ Rm such that(

◦
x,
◦
u,
◦
v) is feasible for (DMOP). If

also weak duality (Theorem 3.1) holds between (MOP) and (DMOP) then(
◦
x,
◦
u,
◦
v)

is efficient solution for (DMOP).

Proof. Since
◦
x is efficient solution for (MOP) and satisfies a constraint qualific-

ation (Marusciac (1982)) for (MOP), then from Kuhn-Tucker necessary conditions

(Marusciac (1982)) we obtain
◦
u > 0 and

◦
v >=0 such that

◦
u∇f ( ◦x)+ ◦v∇g( ◦x) = 0,

vg(
◦
x) = 0

The vector
◦
u may be normalized according to

◦
ue = 1,

◦
u > 0, which gives that

the triplet(
◦
x,
◦
u,
◦
v) is feasible for (DMOP). The efficiency of(

◦
x,
◦
u,
◦
v) for (DMOP)

now follows from Corollary 3.1. 2
Now we state and prove our converse duality theorem of Mond–Weir vector

type duality.

THEOREM 3.3. (Converse Duality) Let(
◦
x,
◦
u,
◦
v) be efficient solution for (DMOP),

and let the hypotheses of Theorem 3.1 hold. If then×nHessian matrix∇2[◦uf ( ◦x)+
◦
vg(

◦
x)] is negative-definite and if∇ ◦vg( ◦x) 6= 0 , then

◦
x is efficient solution for

(MOP).

Proof. Since(
◦
x,
◦
u,
◦
v) is efficient solution for (DMOP) then the following Fitz

John conditions hold (Da Cunha and Polak (1987)): there existsτ ∈ Rm, λ ∈ Rn,
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α ∈ IR, ν ∈ Rm, andµ ∈ Rp, such that

−(∇f ( ◦x))tτ + ∇2[◦uf ( ◦x)+ ◦vg( ◦x)]λ
−α∇ ◦vg( ◦x) = 0, (3.26)

∇f ( ◦x)λ− µ = 0, (3.27)

∇g( ◦x)λ− αg( ◦x)− ν = 0, (3.28)

α
◦
vg(

◦
x) = 0, (3.29)

νt
◦
v = 0, (3.30)

µt
◦
u = 0, (3.31)

◦
u∇f ( ◦x)+ ◦v∇g( ◦x) = 0, (3.32)

◦
vg(

◦
x)>=0, (3.33)
◦
v >=0, (3.34)
◦
u>=0, (3.35)
◦
ue = 1, (3.36)

(τ, α, ν, µ)>= 0. (3.37)

(τ, λ, α, ν, µ) 6= 0. (3.38)

Multiplying (3.27) by
◦
u and using (3.31), multiplying (3.28) by

◦
v and using (3.30)

and (3.29), we obtain
◦
u(∇f ( ◦x))tλ = 0, (3.39)
◦
v(∇g( ◦x))tλ = 0. (3.40)

Premultiplying (3.26) byλt and using (3.40), we have

−λt(∇f ( ◦x))tτ + λt∇2[◦uf ( ◦x)+ ◦vg( ◦x)] = 0, (3.41)

or

−µtτ + λt∇2[◦uf ( ◦x)+ ◦vg( ◦x)]λ = 0. (3.42)

We now claim that

τ 6= 0. (3.43)

Otherwise, from (3.42), we have

λt∇2[◦uf ( ◦x)+ ◦vg( ◦x)]λ = 0. (3.44)

Since∇2[◦uf ( ◦x) + ◦vg( ◦x)] is assumed negative-definite,λ = 0. Therefore, from
(3.26) we have

−α∇ ◦vg( ◦x) = 0. (3.45)
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Using the fact that∇ ◦vg( ◦x) 6= 0, from (3.45) we obtainα = 0, from (3.27),µ = 0
and from (3.28),ν = 0 contradicting (3.38). Hence, (3.43) holds.

From (3.42) and using (3.37) we obtain

λt∇2[◦uf ( ◦x)+ ◦vg( ◦x)]λ = µtτ >=0. (3.46)

Since∇2[◦uf ( ◦x) + ◦vg( ◦x)] is assumed negative-definite,µtτ = 0. Henceλ = 0;
therefore, from (3.26) we have

(∇f ( ◦x))tτ = −α(∇g( ◦x))t ◦v, (3.47)

From (3.32), we have

−(∇f ( ◦x))t ◦u = (∇g( ◦x))t ◦v. (3.48)

From (3.47) and (3.48), we get

(τ t − αu0t )(∇g( ◦x))t ◦v = 0. (3.49)

Using the hypothesis that, the vector∇ ◦vg( ◦x) 6= 0, from (3.49) we get

τ = α ◦u. (3.50)

Henceα 6= 0, becauseτ 6= 0. Using (3.50) withλ = 0 in (3.28), we obtain

g(
◦
x)<=0, (3.51)

which shows that
◦
x is feasible for the primal. Therefore, using Corollary 3.1 and

the hypothesis of the theorem, we have that
◦
x is efficient solution for (MOP). 2

4. Generalized Mond–Weir Duality

We shall continue our discussion of duality for (MOP) in the present section by in-
droducing a general dual problem for (MOP) and proving weak and strong duality
theorems under the weaker invexity assumptions.

We consider the following general Mond–Weir (1981) type dual problem

(GMOP) maximize f (y)+ vJ0gJ0(y)e,

subject to u∇f (y)+ v∇g(y) = 0, (4.52)

vJt gJt (y)>= 0, 1<= t <= r, (4.53)

v >=0, (4.54)

u>= 0, (4.55)

ute = 1; (4.56)

wheree = (1,1, ...,1)t ∈ Rp andJt , 0<= t <= r are partitions of the setP .
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THEOREM 4.1. (Weak Duality).Assume that for all feasiblex for (MOP) and
all feasible(y, u, v) for (GMOP),

(a) u > 0, and (f + vJ0gJ0(.)e, vJt gJt (.)) is strong pseudo-type I aty with
respect toη for any t , 1<= t <= r;

(b) (f + vJ0gJ0(.)e, vJt gJt (.)) is weak strictly pseudoquasi-type I aty with
respect toη for any t , 1<= t <= r;

(c) (f + vJ0gJ0(.)e, v
t
Jt
gJt (.)) is weak strictly pseudo-type I aty with respect to

η for any t , 1<= t <= r;
then the following cannot hold:

f (x) ≤ f (y)+ vJ0gJ0(y)e. (4.57)

Proof. Suppose to the contrary that (4.57) hold. Sincex is feasible for (MOP)
andv >=0, (4.57) imply

f (x)+ vJ0gJ0(x)e ≤ f (y)+ vJ0gJ0(y)e. (4.58)

Also, from (4.53) we have

−vJt gJt (y)<= 0, for all 1<= t <= r. (4.59)

Using hypothesis(a), we see that (4.58) and (4.59) together give

(∇f (y)+ vJ0∇gJ0(y)e)η(x, y) ≤ 0,
(vJt∇gJt (y))η(x, y)<= 0, ∀ 1<= t <= r.

Sinceu > 0, the above inequalities give

[u∇f (y)+
r∑
t=0

vJt∇gJt (y)]η(x, y) < 0. (4.60)

SinceJ0, J1 . . . , Jr are partitions ofP , (4.60) is equivalent to

[u∇f (y)+ v∇g(y)]η(x, y) < 0, (4.61)

which contradicts (4.52).
Using hypothesis(b), we see that (4.58) and (4.59) together give

(∇f (y)+ vJ0∇gJ0(y)e)η(x, y) < 0,
(vJt∇gJt (y))η(x, y)<= 0, ∀ 1<= t <= r.

Sinceu ≥ 0, the above inequalities give

[u∇f (y)+
r∑
t=0

vJt∇gJt (y)]η(x, y) < 0, (4.62)

and then again we have (4.61). Also we obtain a contradiction.
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Suppose now that(c) is satisfied. Again from (4.58) and (4.59) it follows that

(∇f (y)+ vJ0∇gJ0(y)e)η(x, y) < 0,
(vJt∇gJt (y))η(x, y) < 0, ∀ 1<= t <= r.

Sinceu ≥ 0, the above inequalities imply (4.61), again contradicting (4.52).2

COROLLARY 4.1. Assume weak duality (Theorem 4.1) holds between (MOP) and

(GMOP). If (
◦
y,
◦
u,
◦
v) is feasible for (GMOP) withvJ0gJ0(

◦
y) = 0 and

◦
y is efficient

solution for (MOP) and(
◦
y,
◦
u,
◦
v) is efficient solution for (GMOP).

Proof. The proof of this corollary is the same as that of Corollary 1 of Egudo
(1989). 2

THEOREM 4.2. (Strong Duality)Let
◦
x be an efficient solution for (MOP) and

assume that
◦
x satisfies a generalized constraint qualification (Maeda (1994)); then

there exist
◦
u ∈ Rm and

◦
v ∈ Rp such that(

◦
y,
◦
u,
◦
v) is feasible for (GMOP) and

vJ0gJ0(
◦
x) = 0. If also weak duality (Theorem 4.1) holds between (MOP) and

(GMOP) then(
◦
y,
◦
u,
◦
v) is efficient solution for (MOP).

Proof. Since
◦
x is efficient solution for (MOP) and satisfies a generalized con-

straint qualification (Maeda (1994)), by Kuhn–Tucker necessary conditions (Maeda

(1994)) there exists
◦
u > 0 and

◦
v >=0 such that

◦
u∇f ( ◦x)+ ◦v∇g( ◦x) = 0, (4.63)

◦
vigi(

◦
x) = 0, ∀ 1<= i <=p. (4.64)

The vector
◦
u may be normalized according to

◦
ue = 1,

◦
u > 0, which gives that

the triplet(
◦
x,
◦
u,
◦
v) is feasible for (GMOP). From (4.64) we obtainvJ0gJ0(

◦
x) = 0.

Efficiency of(
◦
x,
◦
u,
◦
v) for (GMOP) follows from Corollary 4.1. 2

5. Conclusion

In this paper, we have defined new classes of functions called weak strictly pseudo-
quasi-type I and strong pseudoquasi-type I by relaxing the definitions of type
I, weak strictly pseudoconvex (Marusciac (1982)), and strong pseudoconvex
(Aghezzaf and Hachimi (1998)) functions. Similarly, the classes of weak quasi-
strictly-pseudo-type I and weak strictly pseudo-type I functions are introduced as a
generalization of quasipseudo-type I and strictly pseudo-type I functions (Kaul
et al. (1994)). We have obtained various duality results for a nonlinear multiobject-
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ive programming problem involving the above classes of functions. Another result,
is the relaxation of the assumption of the scalarization of the objective functions
made in (Kaul et al. (1994)), Theorems 4.6–4.8) and (Giorgi and Guerraggio
(1998)), Theorem 7) which was not required for our results.
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